Abstract: Urinary Pesticide Metabolites in School Students from Northern Thailand

Parinya Panuweta,b,c, Tippawan Prapamontofc,d., Somporn Chantarad and Dana B. Barree

aEnvironmental Science PhD Program, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand

bORISE Fellow at Pesticide Laboratory, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA

cPollution and Environmental Health Research Program, Research Institute for Health Sciences (RIHES), Chiang Mai University, P.O. Box 80, Chiang Mai 50200, Thailand

dDepartment of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand

eNational Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA

Received 5 June 2007; revised 30 June 2008; accepted 10 July 2008.

We evaluated exposure to pesticides among secondary school students aged 12–13 years old in Chiang Mai Province, Thailand. Pesticide-specific urinary metabolites were used as biomarkers of exposure for a variety of pesticides, including organophosphorus insecticides, synthetic pyrethroid insecticides and selected herbicides. We employed a simple solid-phase extraction with analysis using isotope dilution high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS). A total of 207 urine samples from Thai students were analyzed for 18 specific pesticide metabolites. We found 14 metabolites in the urine samples tested; seven of them were detected with a frequency17%.

The most frequently detected metabolites were 2-[(dimethoxyphosphorothioyl) sulfanyl] succinic acid (malathion dicarboxylic acid), para-nitrophenol (PNP), 3,5,6-trichloro-2-pyridinol (TPCY; metabolite of chlorpyrifos), 2,4-dichlorophenoxyacetic acid (2,4-D), cis-and trans-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane-1-carboxylic acids (c-DCCA and t-DCCA; metabolite of permethrin) and 3-phenoxybenzoic acid (3-PBA; metabolite of pyrethroids). The students were classified into 4 groups according to their parental occupations: farmers (N=60), merchants and traders (N=39), government and company employees (N=52), and laborers (N=56). Children of farmers had significantly higher urinary concentrations of pyrethroid insecticide metabolites than did other children (p<0.05). Similarly, children of agricultural families had significantly higher pyrethroid metabolite concentrations. Males had significantly higher values of PNP (Mann–Whitney test, p=0.009); however, no other sex-related differences were observed. Because parental occupation and agricultural activities seemed to have little influence on pesticide levels, dietary sources were the likely contributors to the metabolite levels observed.

Copyright © 2008 Elsevier GmbH All rights reserved.