
Pesticides contribute to climate change throughout their 
lifecycle via manufacturing, packaging, transportation, 
application, and even through environmental degra-
dation and disposal. Importantly, 99% of all synthetic 
chemicals —including pesticides — are derived from 
fossil fuels, and several oil and gas companies play major 
roles in developing pesticide ingredients.1 Other chemi-
cal inputs in agriculture, such as nitrogen fertilizer, have 

rightly received significant attention due to their con-
tributions to greenhouse gas emissions. Yet research has 
shown that the manufacture of one kilogram of pesticide 
requires, on average, about 10 times more energy than 
one kilogram of nitrogen fertilizer.2, 3 Like nitrogen fertil-
izers, pesticides can also release greenhouse gas emissions 
after their application, with fumigant pesticides shown 
to increase nitrous oxide production in soils seven to 
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eight-fold.4, 5 Many pesticides also lead to the production 
of ground-level ozone, a greenhouse gas harmful to both 
humans and plants.6, 7, 8 Some pesticides, such as sulfuryl 
fluoride, are themselves powerful greenhouse gases, hav-
ing nearly 5,000 times the potency of carbon dioxide.9

Meanwhile, climate change impacts are expected to 
lead to increases in pesticide use, creating a vicious cycle 
between chemical dependency and intensifying climate 
change (see Figure 1). Research shows that declining 
efficacy of pesticides, coupled with increases in pest 
pressures associated with a changing climate, will likely 
increase synthetic pesticide use in conventional agricul-
ture.10 An increase in pesticide use will lead to greater 
resistance to herbicides and insecticides in weeds and 
insect pests, while also harming public health and the 
environment. The effects of higher synthetic pesticide 
use will disproportionately impact populations already 
under stress from a wide range of climate change effects, 
such as extreme heat and wildfire smoke. The com-
pounded effects of climate change and pesticide use 
primarily fall on the shoulders of people of color— a 
climate and racial injustice.11, 12, 13, 14, 15

Adoption of alternative agricultural systems such as 
agroecological farming minimizes or eliminates syn-
thetic pesticide use while increasing the resilience of our 
agricultural systems to better withstand climate change 
impacts.16, 17, 18 Agroecology is a way of farming rooted 
in social justice that focuses on working with nature 
rather than against it. It relies on ecological principles 
for pest management, minimizing the use of synthetic 
pesticides, while prioritizing the decision-making power 
of farmers and agricultural workers. Agroecology and 
diversified organic agriculture, when paired with social 
justice principles, have been shown to have significant 
climate benefits, while supporting the health and rights 
of agricultural workers, Indigenous Peoples and rural 
communities.

Decisive action is required to reduce agrochemicals’ 
contribution to greenhouse gas emissions and improve 
the climate resilience of food and farming systems. To 
accomplish this, policymakers should:

• Establish measurable goals in climate policies to reduce 
synthetic pesticide use in agriculture;

• Promote the transition to biodiverse, agroecological 
food and farming systems, such as by establishing and 
funding programs that provide increased technical 
assistance and incentives to farmers to adopt or con-
tinue these farming practices; and

• In line with international law, adopt regulations 
that uphold and promote the rights of groups most 
impacted by synthetic pesticide use.

Transitioning our agricultural systems to those that uplift 
ecological and social justice principles will not only help 
mitigate climate change, but also reduce the negative 
health impacts of industrial agriculture. While the work 
toward future policy and practice change continues, we 
can collectively support the advocacy work of impacted 
communities and organizations fighting for more equita-
ble and sustainable food and farming systems right now.

Figure 1. 
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Geographic Geographic 
AreaArea PesticidePesticide 2005 tonnes2005 tonnes 2020 tonnes2020 tonnes

% % 
increased increased 

changechange

USAUSA Pesticides (total)Pesticides (total) 388,275388,275 407,779407,779 5.05.0

USAUSA HerbicidesHerbicides 190,509190,509 255,826255,826 34.334.3

USAUSA InsecticidesInsecticides 61,68961,689 65,77165,771 6.66.6

USAUSA
Fungicides and Fungicides and 

BactericidesBactericides 22,68022,680 24,04024,040 6.06.0

WorldWorld Pesticides (total)Pesticides (total) 2,280,6262,280,626 2,661,1242,661,124 16.716.7

WorldWorld HerbicidesHerbicides 1,043,2231,043,223 1,397,4651,397,465 34.034.0

WorldWorld InsecticidesInsecticides 470,360470,360 471,238471,238 0.20.2

WorldWorld
Fungicides and Fungicides and 

BactericidesBactericides 529,860529,860 605,986605,986 14.414.4

Introduction 
Agricultural policies and export-focused agriculture 
continue to aggressively promote the production of 
chemical-intensive commodity crops. Commodity 
crops are those produced primarily for trade in large-
scale international markets, such as corn, rice, soybeans, 
wheat and cotton. These crops are among those with 
the greatest use of pesticides and fertilizers in the U.S. 
and globally.24, 25 The United Nations Food and Agri-
culture Organization reported global pesticide use in 
2020 at about 2.7 million tonnes (5.9 billion pounds) of 
pesticide active ingredients, with herbicide use at about 
1.4 million tonnes (3.1 billion pounds), fungicides and 
bactericides at 0.6 million tonnes (1.3 billion pounds), 
and insecticides at 0.5 million tonnes (1 billion pounds) 
(see Table 1). Pesticide active ingredients are the chem-
icals in a pesticide formulation meant to control the 
target pest, while pesticide inert ingredients help the 
overall performance of the pesticide. Only pesticide 
active ingredients must legally be publicly disclosed 

Pesticides: The foundation  
of industrial agriculture
In modern industrial agriculture, farm operations are 
viewed as ecologically simplified systems with highly 
controlled and monetized inputs (pesticides, fertilizers 
and seeds) and outputs (crops). In the absence of highly 
diverse and vigorous plant and soil ecosystems that 
provide necessary crop nutrients and natural controls 
of pests and diseases, these “conventional” agricultural 
systems rely on regular inputs of synthetic pesticides and 
fertilizers.19, 20 The primary objective of conventional 
agriculture is to maximize short-term profits through 
increased yields and sales while minimizing internal costs 
(e.g. labor) and ignoring external costs.21, 22 The most 
obvious external costs ignored by industrial agriculture 
are associated with human health impacts15, 16 and the 
degradation of ecosystem services such as clean air, water 
and healthy soil.23 

Table 1. Pesticide use in 2005 and 2020. Source: Food and Agriculture Organization of the United 
Nations. FAOSTAT Online Database. https://www.fao.org/faostat/en/#data/RP. Accessed on Sept. 7, 2022.  

Note: The totals also include pesticide groups not listed, such as mineral oils and rodenticides. Not all 
countries provide data for all pesticide groups in the FAO database. 
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on pesticide labels. Inert ingredients are considered 
company proprietary information, even though many 
are toxic chemicals.26 As Table 1 displays, while the use 
of pesticides overall increased 17% between 2005 and 
2020, herbicide use increased 34%,27 with China, the 
U.S., Argentina, Thailand and Brazil as the top pesticide 
consumers.25 These pesticide use estimates likely underes-
timate actual use significantly because pesticides applied 
as seed treatments are commonly used in the U.S. but are 
not regulated or included in the UN Food and Agricul-
ture database.28, 29, 30, 31

California uses over 200 million pounds (almost 
91 thousand tonnes) per year of pesticide active ingre-
dients, or 18% of the pesticides used in the United 
States.32 While the state produces relatively few com-
modity crops, it produces over a third of the country’s 
vegetables and two-thirds of the country’s fruits and 
nuts.33 The top crops for pesticide use include almonds, 
grapes, tomatoes, strawberries and oranges.32 The pesti-
cide application rate on California cropland is about 4.5 
times the national average.12 Higher application rates are 
driven primarily by the higher value of fruits and vegeta-
bles (compared to major U.S. commodity crops), which 
could result in significant profit losses if crop damage 
from pests were to occur.34 The synthetic pesticides used 
in the greatest volume in California are fumigants and 
the herbicide glyphosate.32 Fumigant pesticides are gas-
eous pesticides applied to soil to control soil-borne pests 
and diseases. Despite high rates of agricultural produc-
tion (and synthetic pesticide use), many agricultural 
counties in California report the highest rates of food 
insecurity and poverty in the state, which particularly 
affects Latinx children.35

While the use of genetically-engineered (GE) crops is 
often touted as a tool for pesticide reduction,36 scien-
tific research shows the opposite to be true.37 GE crops 
are often crops that have been genetically modified to 
be resistant to a specific pesticide, so that farmers may 
apply the pesticide and kill or control surrounding pests 
without damaging their crop. However, the widespread 
adoption of GE crops has led to the emergence of her-
bicide-resistant weeds, causing farmers to apply more 
herbicides.37 For instance, in the United States, the intro-
duction and widespread planting of herbicide-resistant 
crops led to an increase of 527 million pounds (239,000 
tonnes) of herbicide use from 1996–2011, and caused an 
overall 7% increase of herbicides and insecticides.37 The 
use of glyphosate (the active ingredient in Roundup —

often applied to genetically engineered Roundup-tol-
erant crops) in the U.S. increased 300-fold between 
1974 and 2014 to 250 million pounds (113,400 tonnes) 
accounting for about 19% of global sales.38 Despite 
decades-long use of GE cotton designed explicitly to 
reduce insecticide use, cotton is one of the world’s most 
pesticide-intensive crops.39 Cotton production occupies 
2.4% of the world’s agricultural land but uses 4.7% of 
the world’s pesticides, and specifically 10% of the world’s 
insecticides.40 This increasingly high use of pesticides 
negatively impacts both the environment and human 
health.

The human and biodiversity 
impacts of pesticides use
Health impacts from exposure to hazardous pesticides 
include both acute illnesses such as skin rashes, gastro-in-
testinal and respiratory illnesses, and central nervous 
system problems.41, 42 In addition, pesticide exposure is 
associated with many chronic diseases including cancers, 
reproductive and developmental disorders and long-term 
neurological dysfunction.43 A recent review of acute 
pesticide poisoning cases in 141 countries estimated that 
about 385 million cases of unintentional, acute pesticide 

Research shows that intentional diversity in cropping systems can provide natural 
pest control, improve soil health, decrease weed biomass, attract beneficial 
organisms, and improve overall production.
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poisoning occur annually worldwide, including around 
11,000 fatalities.15 Based on a global farming population 
of approximately 860 million, this means that about 44% 
of farmers are poisoned by pesticides every year.15 

In addition to farmers, those most directly affected by 
the use of hazardous pesticides in agriculture include 
agricultural workers, residents of rural communities, and 
residents in communities where pesticides are produced 
and where pesticide wastes are dumped.11, 44, 45, 46 In the 
U.S., people living in these pesticide-impacted commu-
nities are disproportionately low-income and people of 
color.11 These communities experience acute pesticide 
poisonings, chronic health effects like cancer, and devel-
opmental harms, including serious learning disabilities 
among children.15, 47, 48 In these communities, the primary 
routes of exposure are contaminated air and water.49, 50 
For people not living and working in high-risk commu-
nities, the primary routes of exposure to hazardous pesti-
cides are the food they eat and the water they drink.51, 52 
Because children eat, drink and breathe more per pound 
than adults, and because their bodies are actively devel-
oping, they are particularly vulnerable to pesticides in 
their environments and in their food.48, 53 

For farmworkers, primary routes of exposure are from 
pesticides in the air, contact with pesticide residues on 
crops, or when mixing, loading or applying pesticides.54 
The effects of exposure are exacerbated by effects of 
climate change such as high heat, which leads to heat 
stress and makes the human body more susceptible to 
pesticides, increasing the risk of long and short-term 
health effects.12 In hot weather, agricultural workers are 
faced with the tradeoff between increased heat stress 
from wearing gear to protect themselves from pesticides 
and not using protective gear to lower their body tem-
perature.55 In addition to harsh working conditions, 
farmworkers also routinely experience inadequate access 
to healthcare.56 Because of their residence in agricultural 
communities, together with their enhanced susceptibil-
ity, farmworker children suffer some of the most severe 
health impacts from agricultural pesticide use.48 

Pesticides also harm the biodiversity that our agricultural 
systems and natural world depend upon. They have been 
long known to directly poison or lead to population 
declines of birds, mammals, amphibians and beneficial 
plant and insect species.57 They are now widely recog-
nized to be among the top drivers of biodiversity losses 
worldwide.58, 59 Neonicotinoids, a type of insecticide, 

have received public attention due to their significant 
harm to pollinators, like honey bees.60, 61 Honey bees play 
essential roles in pollinating agricultural crops, and are 
responsible for about $15 billion in added crop value in 
the U.S. per year.62 Pesticides also have profound effects 
on soil macro- and micro- fauna, which in turn impact 
the long-term structure and function of agricultural 
soil.63 For example, the use of insecticides and other 
pesticides can result in the death of soil invertebrates like 
earthworms.64 Soil invertebrates are crucial in creating 
structure and aeration in soils and in preventing soil 
compaction, roles that help soil retain water and perform 
other desirable functions.64 

Climate policy ignores synthetic 
pesticides
Globally, food systems account for over one-third of 
all greenhouse gas (GHG) emissions, with 31% of that 
from agricultural production, including the production 
of associated inputs like pesticides.65 While agriculture’s 
contributions to climate change are increasingly recog-
nized in public policy, there are two glaring issues with 
current approaches to the problem. First, the role of pes-
ticides in GHG emissions is infrequently addressed, and 
farming solutions like agroecology that would reduce 
their impact are rarely considered. For example, certain 
practices labeled climate-smart, such as no-till, often rely 
heavily on synthetic herbicides to control weeds on con-
ventional farms and can lead to increased weed resistance 
to herbicides.66 Second, many proposed solutions would 
not result in meaningful GHG emission reductions, or 
would further exacerbate inequities in food and farming.

An example of a false solution is precision agriculture, 
which promises to reduce the use of petroleum-de-
rived pesticides and fertilizers by using computer-aided 
technologies to more accurately determine need (pest 
presence) and then more accurately apply pesticides 
to intended targets.67 However, precision agriculture 
maintains a system dependent upon chemical and 
energy-intensive technologies and materials, while 
diverting attention from and investment in more effec-
tive climate-friendly strategies in agriculture that have 
additional social and public health co-benefits, such 
as agroecology. Precision agriculture also increases the 
power and control of agrochemical companies, many of 
which own the precision agriculture platforms and the 
data inputted by farmers.68 
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Another flawed solution, carbon markets, allows 
agribusinesses or farmers to sell carbon credits to cor-
porations to “offset” continued greenhouse gas emis-
sions —perpetuating reliance on fossil fuels. Carbon 
markets have a poor track record in terms of long-term 
climate mitigation, and have been shown to worsen eco-
nomic and racial disparities.69 

In contrast, farming systems that do not rely on use of 
synthetic pesticides, such as those based on agroecologi-
cal principles or diversified organic farming, can reduce 
GHG emissions and increase carbon sequestration.70, 71, 72 
They also increase farm resilience to climate change and 
pests by enhancing many ecosystem services such as 
water quality and water availability to crops, soil health, 
crop resilience to pests and disease, and greater pollina-

tor and natural pest control resources.73 Utilizing eco-
logical pest and crop management practices reduces the 
need for petroleum-derived pesticides and fertilizers,74 

and therefore reduces associated emissions of greenhouse 
gases. Public policy should support demonstrably effec-
tive, ecologically based practices that mitigate climate 
change while also making farms and rural communities 
more resilient as climate conditions change.69 Beyond 
practice change, ultimately a societal transformation of 
agricultural systems is urgently needed to avert further 
exacerbation of today’s climate, food and biodiversity 
crises. International experts agree that, unlike incremen-
talist tweaks that leave a fundamentally fossil-fuel depen-
dent system in place, agroecology offers a transformative 
approach.17 

Impacts of Climate Change on Pests and Pesticide Use
Scientists expect climate change to dramatically alter 
how toxic chemicals like synthetic pesticides are used, 
adversely impacting the environment and public health. 
Research detailed below shows that the effects of our 
changing climate will likely lead farmers to increase the 
use of synthetic pesticides unless we begin to transition 
toward safer forms of agriculture that use smaller-scale, 
diversified agroecological practices.

How agricultural pests will respond 
to climate change
Climate change is expected to have variable effects 
on agricultural pests, depending on regional climatic 
changes, type of cropping systems and type of pest.75 
Pressure from agricultural pests —including insects, 
other animals, weeds and diseases that impact crop 
productivity— can increase or decrease depending on 
regional climatic shifts, such as changes in precipitation 
and temperature. 

The latest science demonstrates that in the era of rising 
temperatures, crop resilience (the crops’ ability to with-
stand external forces, such as climate impacts or pests) 
is decreasing on farms, making crops more vulnerable to 
pests generally. Heat stress and changing rainfall patterns 
both decrease crop resilience to pests.76 Drought condi-
tions in particular, which are expected to worsen in many 
regions, can weaken plants’ natural defenses against pests, 

and changes in plant biology due to drought may attract 
pests.77 Insects can sense changes that indicate plants are 
more vulnerable, such as higher plant surface tempera-
tures, leaf yellowing, biochemical changes, and possibly 
even the sound waves produced when water columns in 
plant tissue break apart due to water stress.78 Given that 
80% of the world’s cropland is rainfed, global crop yield 
is highly susceptible to changes in rain patterns79 and the 
increased pest pressures that can accompany changes in 
precipitation.  

In addition to decreasing crop resilience, higher global 
temperatures will likely stimulate a general increase in 
the rate of insect development and population growth 
in certain regions, such as the U.S. Midwest.76 Rising 
temperatures and shifts in moisture levels can increase or 
shift insect pests’ geographic range and their ability to 
survive through the winter.77 Researchers have predicted 
that rising CO2 and temperature will accelerate insect 
pests’ metabolism and consumption, ultimately leading 
to declining crop yields.80 

Scientists predict climate change will negatively affect 
certain natural enemies of insect pests (also referred to 
as beneficials), further increasing crops’ susceptibility to 
insect pest damage. For instance, climate change could 
cause insect pests to migrate to new areas where their 
natural enemies may be unable to follow, or the synchro-
nization between the life cycles of pests and their natural 
enemies may be disrupted.81, 82 Pesticide applications are 
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known to be harmful to beneficial organisms that con-
trol pest populations, and predicted increases in pesti-
cide applications would further reduce these beneficial 
populations. Specific impacts of a changing climate on 
these interactions between pests and beneficials are often 
regional- and cropping system-dependent.

Researchers have also predicted that changing envi-
ronmental conditions, such as CO2 and temperature 
increases, will likely increase weed pressures in cultivated 
crops. Weeds are more likely to be resilient and better 
adapted to climate change effects than cultivated crops 
because they have more diversity in their gene pool and 
greater ability to physiologically acclimate to different 
environmental conditions.83 Climate change is also antic-
ipated to introduce weeds to new regions and shift the 
composition of regional weed species, particularly favor-
ing invasive species.84 Expected increases in herbicide 
applications would also increase the prevalence of herbi-
cide-resistant weeds.84 These factors suggest that weeds 
will have an increased ability to outcompete agricultural 
crops in many regions, leading to declining yields.85

Researchers find certain climatic changes affect different 
pests in different ways. For instance, smaller pests, such 
as aphids, mites or whiteflies, can be washed away during 
intense precipitation.86 In areas that might experience 
more periods of prolonged precipitation, plant fungal 
and bacterial diseases are likely to become more com-
mon.75 Therefore, specific regional climatic impacts will 
have a significant influence on which pests become more 
prevalent, and more comprehensive research is needed to 
predict effects for each specific region, 
crop and pests. However, certain agri-
cultural system shifts, like diversifying 
our agricultural systems, could serve as 
universal solutions since they increase 
ecosystem resilience and therefore 
agricultural resilience to climate 
change, regardless of region.87

What does this mean 
for pesticide use under 
climate change?
The latest science reveals that cli-
mate change will likely increase the 
movement of pesticides away from 
their intended targets, polluting the 

environment and endangering public health. Increased 
temperatures are anticipated to result in more pesti-
cide volatilization (when pesticides transform into a 
gas)—meaning more pesticides will end up in our air, 
rather than on their application target.88 Volatilization 
is a key source of pesticide drift, which can cause pesti-
cide poisoning for anyone exposed to the toxic vapor.89 
An increase in severe rain events is expected to increase 
pesticide loss to our waterways, with one study show-
ing concentrations of pesticides in waterways to be 
84–2100% higher after 100-year storms as compared to 
two-year storms.90

Climate change is also expected to affect pesticide deg-
radation, or the process by which pesticides break down 
in the environment. The breakdown products of the 
pesticide degradation process can either be less toxic 
or at times more toxic than the original product.91, 92 
Researchers anticipate that certain climate change effects 
will cause faster pesticide degradation, meaning pesti-
cides will break down faster and become less effective 
over time. For instance, increasing soil temperatures 
have been linked to reduced duration of weed control 
by herbicides because of faster degradation. In contrast, 
low soil moisture has been linked to slower degrada-
tion of herbicides.93 However, overall, faster pesticide 
degradation is expected, likely leading to more frequent 
pesticide applications at higher application rates.10 These 
combined factors are expected to contribute to a likely 
increase (both in volume and frequency) of pesticide use 
across a variety of products.94 
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Greenhouse Gas Emissions of Pesticides 
In recent decades, the greenhouse gas emissions and 
other negative environmental impacts of synthetic nitro-
gen fertilizers have garnered a great deal of attention.95, 96 

Although more nitrogen fertilizers are used in agricul-
ture than pesticides, comparatively little attention has 
been directed toward the greenhouse gas emissions that 
result from pesticide production and use. This is despite 
evidence that manufacturing one kilogram of pesticide 
active ingredient requires, on average, about 10 times 
more energy than one kilogram of nitrogen fertilizer.2, 3 

As nations seek to mitigate climate change and develop 
more sustainable agricultural systems, it is crucial to 
measure and reduce the GHG emissions associated with 
pesticide use. 

Current scientific literature is divided into two focus 
areas for GHG emissions of pesticides. Some studies 
focus on the emissions that result from the production, 
transportation, and field application of pesticides, and 
other studies focus on the short- and long-term GHG 
emissions that result from pesticides’ interactions with 
the environment after application. Virtually no stud-
ies calculate the GHG emissions of pesticide use over 
the full life cycle of the chemicals, which likely causes 
underestimates of true emissions. Research to date also 
omits the emissions associated with pesticide waste, 
such as obsolete stockpiles (stockpiles of pesticides that 
have expired, been made illegal to use or are otherwise 
unwanted) and their disposal through burning and other 
methods —practices common in parts of the Global 
South.

GHG emissions associated 
with pesticide production, 
transportation, and field application
The greenhouse gas emissions associated with the pro-
duction, transportation, and application of pesticides are 
linked to fossil fuel consumption during these processes. 
Importantly, 99% of all synthetic chemicals —including 
pesticides — are derived from fossil fuels, and several oil 
and gas companies play major roles in developing pes-
ticide ingredients.1 Since World War II, pesticides have 
typically been synthesized from petroleum or petroleum 
by-products.97 ExxonMobil, ChevronPhillips Chemical 
and Shell all produce pesticides or their chemical pre-
cursors.1 Many pesticides are also coated in microplas-

tics, which are derived from fossil fuels, to ensure more 
controlled release of the product.98 Multiple pesticide 
corporations self-report high CO2 equivalent emissions 
(CO2e) related to their operations. For instance, 9.8 mil-
lion tonnes of CO2e directly or indirectly resulted from 
Syngenta’s operations in 2021.99 This is equivalent to the 
annual carbon dioxide emissions of more than 2 million 
passenger vehicles.100 Bayer’s Crop Science Division, 
responsible for their pesticide operations, reported that 
their direct emissions totaled about 2.7 million tonnes of 
CO2e in 2021.101 The company also stated that 8.94 mil-
lion tonnes of CO2e emissions were linked indirectly to 
the company’s value chain in 2021, though it did not 
specify how much of those emissions were related to 
their Crop Science division.101 

Although more updated research is needed, researchers 
have calculated the energy use associated with the pro-
duction of specific pesticides, which can then be used to 
estimate CO2e emissions. The production of herbicides 
creates between 18.22 and 26.63 kilograms of CO2e 
per kilogram produced on average.2 The production of 
insecticides creates between 14.79 and 18.91 kilograms 
CO2e per kilogram and the production of fungicides 
creates between 11.94 and 29.19 kilograms CO2e per 
kilogram on average.2 The GHG emissions of glypho-
sate, the world’s most popular herbicide, produces 31.29 
kilograms of CO2e per kilogram while other pesticides 
produce greater than 40 kilograms CO2e per kilogram.2 
To put this in perspective, the energy used to produce 
the amount of glyphosate used globally in 2014 equals 
the energy needed to fuel about 6.25 million cars for one 
year.102 
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These estimates of GHG emissions by pesticides only fac-
tor in the energy used to produce the active ingredients. 
A true estimate must also include the energy needed to 
formulate the pesticide products and manufacture the 
inert ingredients, which can make up the majority of 
a product. For instance, inert ingredients make up as 
much as 50–75% of glyphosate products.103 More than 
500 of these so-called inert ingredients have been or are 
currently used as active ingredients, yet due to propri-
etary protections, the identification and volume of these 
ingredients are kept secret from the public,26 making it 
impossible to calculate energy requirements for the man-
ufacture of pesticide products in their entirety.  

The transportation and application processes add to the 
GHG emissions associated with pesticide use. The far-
ther a pesticide must travel to reach its application site 
and the more times per season that a pesticide is applied, 
the greater the pesticide use emissions. Pesticide trans-
portation and application produce fewer emissions than 
pesticide manufacturing, but research shows these emis-
sions are still significant.104 

Short- and long-term GHG emissions 
post-pesticide application
GHG emissions that result from pesticide use are not 
limited to the emissions involved in pesticide manu-
facturing, transportation and application. Additional 
emissions result from the release of the pesticide into the 
environment and the pesticide’s subsequent interactions 
with organisms in the soil and with the atmosphere, both 
in the short- and long-term.

Some pesticides are themselves greenhouse gases. The 
fumigant sulfuryl fluoride (used to fumigate commod-
ities during transport and storage), is a powerful green-
house gas. Emitting just one ton (0.91 tonnes) of sulfuryl 
fluoride is the equivalent of emitting 4,780 tons (4,336 
tonnes) of CO2.9, 105 Meanwhile, other pesticides interact 
with the environment to produce greenhouse gases in 
a variety of ways. Since often less than 0.1% of applied 
pesticides reach their target,106 with the rest ending up 
on plant leaves, in the soil, in water, or in the air,107 the 
implications for GHG emissions of these pesticides’ fate 
(their off-target movement) in the environment is signif-
icant.

Pesticide application can produce greenhouse gases by 
emitting volatile organic compounds (VOCs). VOCs 

are compounds that easily volatilize into gases that react 
with nitrogen oxides (NOx) and UV rays to produce 
ground-level ozone.108, 109 Ground-level, or tropospheric 
ozone is a significant greenhouse gas that causes respi-
ratory problems in people7 and, according to the U.S. 
Department of Agriculture, causes more damage to 
plants than all other air pollutants combined.8 Studies 
have found that as much as 80 to 90% of applied pesti-
cides may volatilize within a few days of application.110, 111 
Fumigant pesticides are typically associated with the 
most VOC emissions.6 However, many other pesticides 
produce VOCs as well. Monitoring in California’s San 
Joaquin Valley has shown that 76% of pesticide VOC 
emissions are from non-fumigant pesticides.112 

While the adverse effects of physical soil disturbances 
such as intensive tillage on soil micro- and macro-organ-
isms has been widely researched and documented, far 
fewer studies have focused on the impacts of chemical 
disturbances such as pesticides and herbicides on soil life.  
However, studies to date indicate that long-term pesti-
cide use has serious impacts on soil health. Many differ-
ent pesticides have negative effects on beneficial bacteria 
and fungi in the soil.113 These soil microbial and fungal 
communities play a crucial role in soil carbon sequestra-
tion.114 Research indicates soil microbes are responsible 
for producing the most stable forms of soil organic car-
bon that will remain in the soil for long periods of time.69 
Soil microorganisms serve a number of other important 
functions, such as building healthy soil and by extension 
healthy crops, and increasing crop resilience.115 They 
also regulate carbon and nitrogen cycles that control 
emissions of carbon dioxide, methane and nitrous oxide 
(N2O).116

When researchers studied the effects of soil fumigants 
on N2O emissions, they found that the use of chloro-
picrin— a commonly used fumigant— could increase 
N2O production seven to eight fold.5 Nitrous oxide is 
a greenhouse gas 300 times more potent than carbon 
dioxide. Similar effects on nitrous oxide production 
have been documented after application of other pesti-
cides and these effects were evident even after 48 days 
for some applications.117, 118 Researchers have suggested 
that the large N2O emissions associated with certain 
pesticide applications may be a result of impacts on soil 
microbes.117, 118 Thus, pesticide use can increase GHG 
emissions, while negatively impacting soil microbial 
activity and soil health.
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Solutions: From Vicious to Vivacious Cycle
Current conventional agricultural systems reliant on 
synthetic chemicals compromise the integrity and func-
tion of the agroecosystem and its ability to support 
vigorous, pest-resistant crops. These systems necessitate 
continual soil disturbance and frequent application of 
pesticides and fertilizers — a vicious cycle of ecosystem 
 destruction.

In contrast, highly diverse, agroecological cropping sys-
tems can build healthy soil and above-ground ecosystems 
that supply nutrients and natural pest control without 
added synthetic chemicals16— a vivacious cycle of 
 nutrients and pest prevention. 

We’ve seen growing and widespread high-level support 
for replacing the currently dominant chemical-input 
approach to agriculture with a biological approach. 
A number of United Nations agencies and high-level 
expert reports have recognized the need for agroecol-
ogy.17, 119, 120, 121 These evolving perspectives have been 
informed by decades of research and millennia of Indige-
nous Peoples’ and farmers’ practices using agroecological 
approaches that have shown multiple benefits. Bene-
fits include improved yields, greater profitability and 
increased gender equity.16 Agroecological farming is also 
more resilient to climate change effects122, 123 and miti-
gates climate change.124 Additional benefits of agroeco-
logical farming include better public health, improved 
food security and sovereignty, and enhanced biodiversity 
and social benefits, such as better cooperation between 
farmers and communities.16, 125, 126

However, many structural barriers exist that prevent 
farmers from transitioning to agroecological, diversi-
fied farming practices. These barriers must be addressed 
through government policies that support more secure 
land tenure, better access to capital during transition, 
and market incentives.127, 128 A full list of policy recom-
mendations can be found below.

Call to Action
Governmental and collective action must be taken in 
order to avoid the worst effects of today’s climate cri-
sis on our food and farming systems. Decisive action 
is urgently required to mitigate climate change and 
strengthen climate resilience. Significant reductions in 
use of and reliance on synthetic pesticides, combined 
with transitions to least-toxic, diversified agroecological 
farming can help us reach these necessary goals.

We recommend the following priority actions: 

1. Governmental policies addressing climate change 
must include synthetic pesticide use reduction targets 

as a key strategy in order to mitigate and adapt to 
climate change as well as achieve climate justice.

 These targets should include meaningful, measurable, 
and legally binding commitments to:

a. Reduce synthetic pesticide use by 50% by 2030 
(in line with the European Union’s Farm to Fork 
Strategy) and by 90% by 2050; 

b. Reduce pesticide toxicity by 50% by 2030 and by 
90% by 2050. Reducing pesticides’ level of toxicity 
to the human body and environment is a critical 
goal to avoid incentivizing pesticides that can be 

Figure 2. 
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applied at lower rates, but pose higher levels of 
toxicity; 129 

c. Phase out highly hazardous pesticide (HHP) use 
by 2030. 130 The use of HHPs result in dispropor-
tionately higher harm to public health and the 
environment, and therefore must be phased out on 
an expedited timeline; and

d. Transition 30% of total agricultural acreage to 
agroecology or diversified organic agriculture by 
2030, similar to the EU’s Farm to Fork Strategy.

Without measurable targets as guideposts to governmen-
tal action, policies could result in government spending 
without achieving meaningful reductions in use of 
synthetic pesticides generally, and highly hazardous 
pesticides in particular. We also recognize that countries 
around the world have a range of agricultural systems 
and pest management practices, and recommend that 
these goals be tailored to regional considerations in ways 
that prioritize the health and wellbeing of rural commu-
nities, Indigenous Peoples, workers, and other histori-
cally oppressed populations.

2. Governments must significantly increase public 
investment in farmer-centered participatory research 
and technical assistance, and direct financial support 
to enable farmers to transition to agroecological 
approaches. Public investments should:

a. Increase knowledge-sharing opportunities for 
farmers and agricultural workers to share their 
expertise and learn more about agroecological 
farm management practices;

b. Expand the capacity and quality of technical assis-
tance providers in providing relevant support to 
farmers —both those practicing ecological farm-
ing, as well as those seeking to transition to an 
agroecological approach;

c. Direct financial assistance, especially to small-scale 
farmers and farmers of color, to adopt or continue 
agroecological farm management practices; and

d. Increase government procurement programs that 
incentivize the market growth of products grown 
on agroecological or diversified organic farms.

3. Governments must adopt policies that support the 
rights of agricultural workers and other historically 
oppressed groups.

 Policies should support alternative agricultural sys-
tems like agroecology or diversified organic agricul-
ture where decision-making power is held by those 
most affected by synthetic pesticide use and exploit-
ative farming practices, such as farmers of color, 
small-scale farmers, farmworkers, environmental 
justice communities and Indigenous Peoples. If these 
communities’ rights to land, clean air and water, safe 
working conditions and healthy food were respected 
by decision-makers, we would not have the chemi-
cal-laden, industrial agricultural system we see today. 
Recommended policies to ensure fulfillment of the 
rights of these groups include policies that:

a. Protect workers’ rights to health, safety and a living 
wage; outlaw and prevent abusive and harmful 
working conditions; grant an immediate pathway 
to citizenship for agricultural workers; and protect 
their right to freedom of association (the ability to 
unionize and vote anonymously);

b. Ensure secure land access and ownership for the 
groups mentioned above, all of whom have histori-
cally been denied land ownership rights, including 
through reparations or land back*; and that 

c. Support the leadership and agency of those most 
impacted by synthetic pesticide use to define and 
build solutions.

Collective Action
History has shown us how much more power we have 
when we act collectively rather than individually. We rec-
ommend that individuals join collective movements that 
support the rights of small-scale farmers, farmworkers, 
Indigenous Peoples and environmental justice communi-
ties to make decisions about the land that they steward. 

Individuals can participate in collective action with PAN 
and other organizations and social movements fighting 
to support these rights and pass agricultural policies 
that minimize synthetic pesticide use and its associated 
harms. 

Together, we have the power to transform agriculture 
and achieve social, environmental and climate justice.

* Land back is a movement led by Indigenous Peoples to uphold their sovereignty 
and return land back to the people who occupied it before colonization.
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